SNAP technical design highlights

Launch

Physics Discoveries

Assembly

Configuration

Development

Supernova Acceleration Probe

2010

Michael Levi July 14, 2001

From Science Goals to Project Design

- Discoveries 3.8 mag before max
- Spectroscopy with S/N=10 at 15 Å bins
- Near-IR spectroscopy to 1.7 μm

Satellite / Instrumentation Requirements

- ~2-meter mirror
- 1-square degree imager
- Spectrograph (0.35 μm to 1.7 μm)

Derived requirements:

- High Earth orbit
- ~50 Mb/sec bandwidth

Mission Requirements

- Minimum data set criteria:
 - Discovery within 2 days (rest frame) of explosion (peak + 3.8 magnitude),
 - Ten high S/N photometry points on lightcurve,
 - Lightcurve out to plateau (2.5 magnitude from peak),
 - High quality peak spectrophotometry
- How to obtain both data quantity AND data quality?
 - Batch processing techniques with wide field -- large multiplex advantage,
 - Wide field imager designed to repeatedly observe an area of sky
 - Mostly preprogrammed observations, fixed fields
 - Very simple experiment, passive expt.

Mission Design

SNAP a simple dedicated experiment to study the dark energy

- <u>Dedicated instrument</u>, essentially no moving parts
- Mirror: 2 meter aperture sensitive to light from distant SN
- <u>Optical Photometry</u>: with 1°x 1° billion pixel mosaic camera, high-resistivity, radtolerant p-type CCDs sensitive over 0.35-1mm
- <u>IR photometry</u>: 0.25 sq. degree FOV,HgCdTe array (1-1.7 mm)
- Integral field optical and IR spectroscopy:
 0.35-1.7 mm, 2"x2" FOV

Cut away View of Structure

Telescope Assembly

Observatory Parameters

Primary Mirror diameter= 200 cm

Secondary Mirror diameter= 42 cm

Tertiary Mirror diameter=64 cm

Aperture ~ 2.0 meter 1° x 1° Field-of-view Optical resolution diffraction-limited at I-band Wavelength 350nm - 1700nm Solar avoidance 700 Telescope 270-290K (below thermal **Temperature** background) Fields of study North and South Ecliptic Caps Image Stabilization Focal Plane Feedback to ACS Plate Scale ~ 0.1 arcsec/pixel

Edge Ray Spot Diagram
(box = 1 pixel):

Optical Train

Primary Mirror Substrate

- Key requirements and issues
 - Dimensional stability
 - High specific stiffness (1g sag, acoustic response)
 - Stresses during launch
 - Design of supports
- Baseline technology
 - Multi-piece, fusion bonded, with egg-crate core
 - Meniscus shaped
 - Triangular core cells
- Material
 - Baseline = ULE Glass (Corning)

Initial design for primary mirror substrate: 120 kg

Goddard Designed Spacecraft

Spacecraft Assembly

Launch Vehicle Study

Launch Vehicle Study

			TMA-0x Off-Axis	TMA3x- Off Axis	TMA-0x	TMA-3x	TMA-40	TMA-43	TMA-51	TMA-55	
Space Transportation System	24,000 Kg	\$ 500 M									
Titan IVB/Centaur/SRMU	8600 Kg	\$ 250 M				0	0				We are HERE
Ariane 5	6800 Kg	\$ 200 M									/
EELV-Heavy	6120 Kg										
H2-A	6000 Kg										
Proton	4800 Kg	\$ 50-70 M									Anything is possible
H2	4000 Kg	\$ 150 M									
Sea Launch I/Zenit 3	3300 Kg	\$ 50-70 M							1	4	Will certainly work, and we can expand the miss
Atlas II ARS	3100 Kg										Works, and we have data points to show how
Delta IV	2800 Kg	\$ 100 M									Will probably work but we havenit tried it.
Delta III	2700 Kg	\$ 80 M							9	8	Might work but will take a Heroic effort
Atlas II AR	2100 Kg	\$ 95 M									Won't work
Delta II 7920 H-10L	900 Kg	\$ 80 M									
Delta II 7925	1260	\$ 70 M				Ŏ	Ŏ				

Sea Launch Fairing

Orbit Trade-Study

Feasibility & Trade-Study

Orbit	Radiation	Thermal	Telemetry	Launch	Stray Light	Rank
HEO/	Very Good	Passive	Med. BW	Fair	Dark	1
Prometheus						
HEO / L2	Very Good	Passive	Low BW	Fair	Dark	2
1150 / 050	_	.			5	
HEO / GEO	Poor	Passive	24 hr	Fair	Dark	3
LEO / Equator	Lowest Dose	Mechanical	High BW	Fair	Earth Shine	1
LEO / Equator	Lowest Dose	Mechanical	піўп Бүү	Ган		4
LEO / Polar	High at Poles	Mechanical	High BW	Excellent	Earth Shine	5
		e carmear		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J
LEO / 28.5	Lowest Dose	Mechanical	High BW	Excellent	Earth Shine	6

Selected Lunar Assist "Prometheus" Orbit

14 day orbit: 39 Re semi-major axis

Orbit Optimization

- Uses Lunar Assist to Achieve a 14 day Orbit, with a Delta III, Delta IV-M, Atlas III, or Sea Launch Zenit-3SL Launch Vehicle
- Good Overall Optimization of Mission Trade-offs
- Low Earth Albedo Provides Multiple Advantages:
 - Minimum Thermal Change on Structure Reduces Demand on Attitude Control
 - Minimum Thermal Change on Telescope very stable PSF
 - Excellent Telemetry, reduces risk on satellite
 - Outside Radiation Belts
 - Passive Cooling of Detectors
 - Minimizes Stray Light
 - MAP currently proving orbit concept

Three Ground Stations

Mission Operations

Mission Operations Center (MOC) at Space Sciences Using Berkeley Ground Station

- Fully Automated System Tracks Multiple Spacecraft
 - 11 meter dish at Space Sciences Laboratory
 - Science Operations Center (SOC) closely tied to MOC

Operations are Based on a Four Day Period

- Autonomous Operation of the Spacecraft
- Coincident Science Operations Center Review of Data with Build of Target List
- Upload Instrument Configuration for Next Period

GigaCAM

GigaCAM, a one billion pixel array

- Approximately 1 billion pixels
- ~132 Large format CCD detectors required
- Larger than SDSS camera, smaller than H.E.P. Vertex Detector (1 m²)
- Approx. 5 times size of FAME (MiDEX)

Camera Assembly

IR Enhanced Camera with Fixed Filter Set

25 HgCdTe 132 CCD's

3 IR Filters8 Visible Filters

Mosaic Packaging

With precision CCD modules, precision baseplate, and adequate clearances designed in, the focal plane assemble is "plug and play."

CCD Subassembly

Typical CCD's

Drawbacks:

- 1) Poor blue response due to absorption in polysilicon gate electrodes
- 2) Poor near-IR response due to thinness of the epitaxial layer
- 3) Interference patterns due to gate structure

thickness (≈20µm)

Drawbacks:

- 1) Thinning is difficult and expensive
- 2) Poor near-IR response
- 3) Interference (fringing)
- 4) Lateral diffusion in fieldfree region (degraded PSF)

Silicon Absorption Length

Photoactive region of standard CCD's are 10-20 microns thick Photoactive region of LBNL CCD's are 300 microns thick

High-Resistivity CCD's

- Broad technology patent for high-resistivity CCD technology
- Better overall response than more costly "thinned" devices in use
- High-purity silicon has better radiation tolerance for space applications
- The CCD's can be abutted on all four sides enabling very large mosaic arrays
- Measured Quantum Efficiency at Lick Observatory (R. Stover):

LBNL 2k x 2k results

Image: 200 x 200 15 mm LBNL CCD in Lick Nickel 1m.

Spectrum: 800 x 1980 15 mm LBNL CCD in NOAO KPNO spectrograph.

Instrument at NOAO KPNO 2nd semester 2001 (http://www.noao.edu)

LBNL 2k x 4k

USAF test pattern.

LBNL 2KX4K #1 R(17) -135c image

Size: 512 Rows, 272 Cols Origin (0,0)

Trap sites found by pocket pumping.

Measurement of PSF with pinhole mask

Measurement of PSF with pinhole mask

Measurements at Lick Observatory

CCD Diffusion

CCD Thickness vs. Voltage to Obtain Various Lateral Diffusion Values

Intra-pixel variation

Radiation Damage

Solar protons are damaging to CCDs.

• WFPC2 on HST developed losses up to 40% across its CCD due to radiation damage.

Radiation testing is done at the LBNL 88" Cyclotron with 12 MeV protons.

SNAP expected lifetime dose 5 x 10⁹ protons/cm²

CTI is the charge transfer inefficiency

 $Q = Q_0^{(1-CTI)*N_{transfer}}$

 $N_{transfer} \sim 2000$

Parallel CTI

10.5 μm Well Depth

Well Saturation 10.5 mm, 1478 x 4784

Instrument Electronics Context

Readout Electronics Concept

- •CDS Correlated Double Samples is used for readout of the CCDs to achieve the required readout noise. Programmable gain receiver, dual-ramp architecture, and ADC buffer. HgCdTe compatible.
- •ADC 16-bit, 100 kHz equivalent conversion rate per CCD (could be a single muxed 400 kHz unit).
- •Sequencer Clock pattern generator supporting modes of operation: erase, expose, readout, idle.
- •Clock drivers Programmable amplitude and rise/fall times. Supports 4-corner or 2-corner readout.
- •Bias and power generation Provide switched, programmable large voltages for CCD and local power.
- •Temperature monitoring Local and remote.
- •DAQ and instrument control interface Path to data buffer memory, master timing, and configuration and control.

CDS ASIC

Shortwave HdCdTe Development

- Hubble Space Telescope Wide Field Camera 3
 - WFC-3 replaces WFPC-2
 - CCDs & IR HgCdTe array
 - Ready for flight July 2003
 - 1.7 mm cut off
 - 18 **m**m pixel
 - 1024 x 1024 format
 - Hawaii-1R MUX
 - Dark current consistent with thermoelectric cooling
 - < 0.5 e/s at 150 K
 - <0.05 e-/s at 140 K
 - Expected QE > 50% 0.9-1.7 mm
 - Individual diodes show good QE
 - Effective CdZnTe AR coating
 - No hybrid device with simultaneous good dark current & QE

Spectroscopic Integral Field Unit Techniques

Current Work Areas

- Optical Telescope Assembly optics design, trade studies, risk assessment
- Instrument development
- Orbit analysis and study
- Structure design
- Thermal control system design
- Attitude Control System analysis and modeling
- Spacecraft systems refinement
- Integration and Test planning
- Data system layout
- Computational system definition

Technology readiness and issues

NIR sensors

- HgCdTe stripped devices are begin developed for NGST and are ideal in our spectrograph.
- "Conventional" devices with appropriate wavelength cutoff are being developed for WFC3 and ESO.

CCDs

- We have demonstrated radiation hardiness that is sufficient for the SNAP mission, but now need to extend to Co⁶⁰ and commercial devices
- Extrapolation of earlier measurements of diffusion's effect on PSF indicates we can get to the sub 4 micron level. Needs demonstration.
- Industrialization of CCD fabrication has produced useful devices. More wafers have just arrived.
- Detectors & electronics are the largest cost uncertainty.
- ASIC development is required.

<u>Filters</u> – we are investigating three strategies for fixed filters.

- Suspending filters above sensors
- Gluing filters to sensors
- Direct deposition of filters onto sensors.

Technology readiness and issues

On-board data handling

- We have opted to send all data to ground to simplify the flight hardware and to minimize the development of flight-worthy software.
- 50 Mbs telemetry, and continuous ground contact are required. Goddard has validated this approach.

Calibration

There is an active group investigating all aspects of calibration.

Pointing

- The new generation HgCdTe multiplexor and readout IC support high rate readout of regions of interest for generating star guider information.
- Next generation attitude control systems may have sufficient pointing accuracy so that nothing special needs be done with the sensors.

<u>Telescope</u>

Thermal and stray light

Software

Data analysis pipeline architecture

Conclusion

- Fundamental science
- Lots of R&D going on right now
- Many areas that are uncovered or need very significant effort
- Collaboration still growing
- We need your help!